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We present a model for the description of dark IV curves in midinfrared quantum well infrared photodetec-
tors at low temperatures, in a regime where dark current is dominated by interwell tunneling. The model
separates the IV curve into a low-field and a high-field region allowing us to identify the effects ascribed to
miniband transport and carrier localization, respectively. At low fields the system is thought as a superlattice
and described by means of a high-density correction of the Esaki-Tsu model. This approach allows us to
simulate current saturation phenomena that occur at low temperatures at intermediate fields. On the other hand,
high-field transport effects are described in the localized Wannier-Stark basis in order to account for tunneling
and field-assisted thermionic emission effects. We then compare simulations with our measurements of the IV
curves of mid-IR quantum well infrared photodetectors finding good quantitative agreement between theory
and experiment.
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I. INTRODUCTION

Quantum well infrared photodetector �QWIP� technology
has developed at a sustained pace in last years and now state
of the art QWIPs in the midinfrared �MIR� spectral range are
mature and reliable devices.1 Whereas the main applications
of QWIPs are dedicated to imagery in the atmospheric trans-
parency windows �3–5 �m and 8–12 �m�, new aerospace
and defense applications have developed the interest for the
12–20 �m wavelength.

The presence of dark current in QWIPs is one of the main
performance-limiting factors and as such has been the sub-
ject of intense research in the past.2–6 It is now clear that for
devices operating in the liquid nitrogen temperature range
the dark current is caused by thermally excited carriers and
thus shows an exponential dependence on temperature. The
most common way of reducing the dark current in present-
day QWIP-based infrared imagery systems is thus to reduce
the operating temperature in the liquid nitrogen range until
the desired performance requirements are met. Anyway the
cost of the cryogenic coolers has a huge impact on system
design and this is the reason why the operating temperature
of common QWIP systems is not usually pushed too low.

In some aerospace and defense applications such con-
strain is relaxed and this allows to reduce the temperature
down to a regime where dark current is dominated by tun-
neling rather than thermionic emission. Nevertheless because
such applications usually involve very low photons fluxes,
the reduction in dark current remains a crucial issue that
cannot be addressed by further temperature reduction since
the tunneling currents are independent of it.

Since the first step in technological optimization is the
understanding of underlying physical processes, in the
present paper we investigate the nature of dark current in
QWIPs in the low-temperature regime by developing a
simple model and ready interpretable model which is then
used to justify the data measured from QWIPs that we have
designed and grown.

The paper is organized as follows. In Sec. II we describe
the device under study and present the IV measurements and
then Sec. III contains a general description of the model we
have developed. Finally in Sec. IV we apply the model to
compute the IV curve of the device described in Sec. II and
discuss our results.

II. EXPERIMENT

The device under study is a mid-IR QWIP composed of
40 GaAs /Ga0.85Al0.15As periods, with 7.3 nm wells and 35
nm barriers �as shown in Fig. 2�. The wells are n doped and
the sheet density is N2D=3�1011 cm−2, corresponding to an
average volume density N3D=2.13�10−17 cm−3 over the su-
percell. This gives a Fermi energy of the electron population
of 10.5 meV above the ground state.

IV measurements of QWIP have been made using a 6430
Keithley femtoamperemeter, whereas the component is
placed on the cold finger of a circulation Janis cryostat. Tem-
perature regulation is ensured by a 330 Lakeshore.

Figure 1 shows the current-voltage �I-V� curves of the
device measured at temperatures ranging from 10 to 60 K
showing qualitatively different behaviors as temperature in-
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creases. In particular, at low temperatures �T�30 K� some
interesting features are present: after an initial increase the
current shows a saturation resulting in a wide plateau region
where it remains constant over a large bias range at a value
of around 3�10−6 A /cm2. Then starting from around 10
kV/cm the current starts to rapidly increase again up to
0.1 A /cm2. The low-temperature curves show no depen-
dence on the temperature itself over the whole bias range.
Starting from 30 K additional features begin to show up in
the plateau region and finally at high temperature the IV
curves show a qualitatively different behavior: the plateau is
no more present and the IV curve is constantly increasing
over the whole electric field range toward an exponential
asymptote.

III. MODELING

The complete IV curve family can be divided in three well
separated regions where different transport mechanisms can
be thought to apply. In the high-temperature regime the cur-
rent is due to transport of thermally excited carriers in the
continuum and well established models exist for its
evaluation.6 At low temperatures the continuum is not popu-
lated and the current can thus be only due to carriers moving
across bound states, i.e., tunneling currents. The lack of tem-
perature dependence of the tunneling current tells us that
only electrons in the ground state are contributing to it. The
shape of IV curves suggest the identification of two addi-
tional regimes, namely, a low-bias and a high-bias regime,
each one characterized by a clear fingerprint: a saturating
low-field current followed by a rapid increase at high biases.
The aim of this paper is the clarification of the physics un-
derlying these two regimes.

Since the barriers in QWIPs are usually very thick �20–70
nm� and the number of unit cells is usually sufficiently high
to allow us to neglect the effect of contacts, transport can be
thought as due to electrons moving in a weakly coupled su-
perlattice along the growth direction z under the effect of an
electric field. Although a huge amount of theoretical and ex-
perimental work has been carried out in the past regarding
transport in superlattices, very little attention has been de-
voted to the weakly coupled case.7 This is mainly due to the
fact that physically relevant effects such as resonant tunnel-
ing and interminiband Zener transitions are much stronger in
superlattices with thin barriers, where the gaps between
minibands become comparable to the miniband width.

From these studies it has become clear that two well sepa-
rated pictures might be applied to the study of transport in
these systems: the miniband picture and the localized
Wannier-Stark picture. These two pictures are now recog-
nized to be formally equivalent8 and reflect the well-known
gauge freedom in electrodynamics: while in the miniband
picture the bias field is taken as the time derivative of a
vector potential with linear time dependence �but space in-
dependent�, in the Wannier-Stark case the field is thought as
the gradient of a time independent scalar potential. As a re-
sult the carrier transport process is described in two alterna-
tive ways. In the miniband picture the electric field has the
role of increasing the electron wave vector along the direc-
tion of the field at a rate proportional to its intensity. In the
Wannier-Stark picture there is no wave vector along the
growth direction and the effect of the field is to change the
interwell tunneling probabilities by modifying the shape of
the barriers. They are thus just two different points of view
of the same problem and the description of physical pro-
cesses can be in theory carried on in both pictures correctly.

Anyway when dealing with numerical computation the
Wannier-Stark based codes usually suffer from convergence
problems due to the wave function delocalization at low
fields, while nontrivial energy-nonconserving processes due
to the time dependence of the basis appear in the miniband
picture at high fields which are difficult to handle. Thus de-
pending on the magnitude of the electric field, modeling �es-
pecially numerical calculations� is more easily handled in
one of the two pictures: while miniband transport is usually
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FIG. 1. �Color online� Current voltage characteristics of the de-
vice at different temperatures. The current shows no dependence on
temperature up to 20 K, and then its roughly exponential increase
denotes the onset of the thermionic regime.
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FIG. 2. Conduction band profile and normalized wave functions
for the QWIP under study. The gray shaded regions represent the
miniband along the growth direction.
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best suited to low-field regimes, the Wannier-Stark picture is
better behaved in the opposite limit.

Moreover the separation between “low” and “high” elec-
tric fields cannot always be told with precision. When deal-
ing with transport in a superlattice with spatial periodicity Lz
subject to a constant electric field F along the growth direc-
tion it is commonly accepted that the miniband picture is
valid when the Stark shift eFLz is less than the typical energy
scale of the miniband structure, while the Wannier-Stark pic-
ture applies otherwise. Such characteristic energy scale is
usually taken as the miniband width �, but in a system with
multiple minibands this is not a unique parameter and the
gaps between minibands might be used instead. In other
words this amounts to evaluating how strong the Zener ef-
fects are and whether or not they can be neglected in the
miniband picture.

A. Modeling strategy

The miniband structure of the device under study is com-
puted by means of a plane-wave expansion of the
Schrödinger equation within the effective mass approxima-
tion as described in Ref. 9. The zero-field conduction-band
profile is taken to be piecewise constant with a barrier height
of 128 meV, infinitely periodic along the growth direction
and perfectly homogeneous along the in-plane directions.
Considering 7.3 nm wells and 35 nm barriers the system
shows two bound levels at energies E0=38.5 meV and E1
=124 meV from the quantum well �QW� bottom giving rise
to two minibands of width �1=30 neV and �2=1.4 meV.

Such numbers, especially the incredibly low ground mini-
band width, clearly tell us that the systems falls in the cat-
egory of weakly coupled superlattices and also pose some
problems in the definition of high- and low-field regime.
While it is clear that the Stark shift is greater than both the
miniband widths for any experimentally reasonable bias, the
separation between the two bound levels, which amounts to
87 meV, corresponds to a bias of about 20 kV/cm which
corresponds to the highest electric field applied to the device
in our measurements.

In this situation there is no clear indication regarding
which of the two pictures should best describe the problem
but rather it is more likely that a model based on a transition
between the miniband and the Wannier-Stark pictures should
be developed. We decide to write the total current density j
as the sum of different contributions

j = �
�

j� + j�→c, �1�

where j� represent current components due to electrons in
miniband �, or alternatively, electrons that tunnel from the
�th level of a QW to the corresponding �th level in the
neighboring one. As we shall see, theses terms are dominant
at very low fields, and thus are likely to be described by the
miniband picture. The terms j�→c are current contributions
due to electrons tunneling from state � directly into the con-
tinuum, a process which is dominant at very high fields, and
thus these terms will be handled in the Wannier-Stark pic-
ture.

B. Low-temperature and low-bias regime

When the superlattice is subject to a very low electric
field, as already mentioned, the miniband picture should be
best suited to describe the problem. In addition, at very low
temperatures, the excited state is not populated so we are
dealing with a single miniband transport problem. This fact
is also confirmed by the lack of temperature dependence of
the current up to 30 K over the whole electric field range,
which means that thermal activation of the upper miniband
can be neglected. The characteristic feature of the IV curves
shown in Fig. 1 in the low-field/low-temperature regime is a
saturating behavior which results in a large plateau where the
current remains independent of the applied bias.

Such behavior reminds of the well-known negative differ-
ential resistance effect in superlattices, which was first de-
scribed by Esaki and Tsu10 by means of a semiclassical
single miniband transport model in the low-density limit.
Such model was subsequently generalized to cases in which
the Fermi energy may lie over the upper miniband edge by
Lebwohl and Tsu.11 Anyway such extension was carried on
at zero temperature, where the Fermi-Dirac distribution is
taken to be a unit step function. Such approximation is valid
at low temperatures if the miniband width � is greater than
kBT because in that case we can assume that the miniband is
either filled, empty, or half-filled. In the present case such
approximation cannot be applied because ��kBT for any
reasonable temperature, thus we shall perform the computa-
tion again by assuming that the distribution function is
slowly varying across the miniband �details can be found in
Appendix A�.

Surprisingly enough, the final result is the same as re-
ported in Ref. 11 for T=0 and we can find the same analyti-
cal expression for ground miniband current,

j0 = N3D
F�

	2

e2Lz
2 + �F��2

�2

8EF
f�E0� . �2�

where EF is the electron Fermi energy, Lz is the potential
periodicity, F is the electric field, � is the miniband width,
and f�E0� is the value of the Fermi-Dirac distribution at the
lower edge of the ground miniband, which is 1 in the low-
temperature regime since the Fermi energy is well above the
ground state. The momentum relaxation time � describes the
time rate at which electrons are scattered back toward the
center of the Brillouin zone and in this model has to be
regarded as a free parameter, even though we shall see that it
will not influence the final result.

Figure 3 shows the computed IV curve for different values
of � and the experimental data at 10 K. It can be seen that
within this model the plateau current corresponds to the
maximum of the Esaki-Tsu IV curve, after which the nega-
tive differential resistance region begins. The value of the
momentum relaxation time � defines the position and width
of the maximum, giving rise to a wide plateau for �=20 fs,
but the absolute value of the saturation current is not affected
by � and is always equal to
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jsat =
eN3DLz�

2

16	EF
=

1

4

e

	

�	��2 �3�

where 
=m� /�	2 is the two-dimensional �2D� density of
states and 	 is the coupling energy between the ground
states of two neighboring quantum wells. The rightmost term
of the equation allows for a simple and straightforward in-
terpretation of the saturation current: it is due to a fraction of
the electrons contained in a narrow energy band close to the
Fermi surface oscillating from one well to the other.

The theoretical curve in Fig. 3 is able to follow closely the
experimental data up to fields of about 10 kV/cm, where a
sudden increase in the current is present: we shall assume
that this is the point where the high-field region begins.

Anyway it is remarkable that such a simple model holds
up to a regime where the Stark shift is well beyond the
ground miniband width, this may be justified by the fact that
the big �relatively to miniband width� minigap prevents Ze-
ner tunneling effects to occur and thus allows for a simple
single miniband transport description.

Even though this model reproduces well the low-field cur-
rent, there is still a flaw in it. Equation �3� shows that the
saturation current contains the ratio between the doping den-
sity N3D and the Fermi energy. Although the Fermi energy is
in principle temperature dependent it can be assumed that in
a 2D system its value is proportional to the electron density,
thus the ratio N3D /EF is a constant and the saturation current
does not depend on the doping. This assertion is in contrast
with what is commonly observed in practice, where the tun-
neling currents should have at least a linear dependence on
the doping.

From a theoretical point of view the reason why this is
happening is clear: in the miniband picture a completely
filled miniband does not contribute to the current, thus all
those electrons that do not have enough in-plane kinetic en-
ergy to cross the chemical potential do not affect the total
current. This is made clear by the term � /EF that appears in
Eq. �A16�, which tells us that the only electrons contributing
to the current are those contained in a narrow energy band

close to the Fermi surface. When an electron is added to the
system it will lie above the others and thus it will lie in such
narrow band and will increase the current, but at the same
time the chemical potential will be raised pushing another
electron out of the bottom of such band.

C. Low temperature and high-bias regime

In the high-bias region coupling between the ground and
excited states or the continuum due to the electric field is to
be expected. The most natural basis to handle these effects is
the one provided by localized Wannier-Stark states in which
such processes can be regarded as resonant tunneling effects
or field-assisted thermionic emission.

Regarding resonant tunneling contributions a quick calcu-
lation shows that the alignment between the ground state of a
QW and the excited state of the following one is reached at
around 20 kV/cm. Well before this regime the excited state is
actually pushed into the continuum and thus a description in
terms of resonant tunneling between localized states would
not be appropriate. In addition field-assisted thermionic
emission should play an increasing role with increasing elec-
tric field as the triangular barrier that separates the ground
state from the continuum becomes thinner. We shall then
describe both effects in terms of electrons tunneling out of
the ground state directly in the continuum through thick bar-
rier made up of the neighboring QWs and barriers. With the
use of the modified transfer-matrix method12 one is able to
write down an analytical expression of the transmission co-
efficient T of such barrier, as explained in detail in Appendix
B, and once the latter is known we can compute the ground
state to continuum tunnel current as

j0→c = eN2D
E

h
T , �4�

where N2D is the electron sheet density E is the carrier en-
ergy above the well bottom.

Depending on the applied field the electrons in the ground
state of a QW will have to tunnel through a certain number
of neighboring stages before reaching the continuum, and
even at that point their motion will be heavily influenced by
the superlattice potential, at least until they have enough en-
ergy that they can be considered as being moving in an un-
perturbed linear potential, i.e., their energy above the barrier
is much greater than the barrier height itself. Thus the key
point is the definition of the effective barrier seen by elec-
trons: in principle one should write the transmission coeffi-
cient for all the superlattice periods from a certain well to the
contacts, but this is not feasible because of numerical insta-
bilities in the evaluation of Airy functions at high energies,
so one has to define an effective barrier length.

Figure 4 shows the transmission coefficient from the
ground state of a QW to the continuum computed using a
barrier consisting of 1, 2, or 3 superlattice periods. It can be
seen that the major difference lies in the low-field behavior:
if we consider a barrier made of just one lattice period
�barrier+well� we are allowing the electron to tunnel into the
continuum even at low fields because the effective barrier
width coincides with the AlGaAs barrier between two wells.
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FIG. 3. Low field IV curve computed by the high-density Esaki-
Tsu mode for �=100 fs �dash-dot line�, �=50 fs �dashed line� and
�=20 fs �continuous line�. Circles show experimental data at 10 K.
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By adding another period the low-field transmission is killed
and high-field resonances show up due to the coupling of the
QWs. The presence of a third period further lowers the low-
field transmission and adds more high-field resonances.

Such resonances are not observed in the experimental data
and are due to the fact that this model lacks any scattering/
dephasing mechanisms that would provide the broadening
necessary to smooth the curve. Thus we decided to use a
two-period barrier in order to keep artificial resonances at
minimum.

D. High-temperature regime

In the high-temperature regime thermal activation of the
higher states occurs and thus the j� and j�→c with ��0 be-
come relevant. The miniband currents can be now computed
by the standard Esaki-Tsu model since the Fermi level is
always well below the lower miniband edge and thus the
low-density approximation applies. We can then use Eq.
�A5� to compute the average velocity and write the miniband
current of �th miniband as

j� = N3D
kBT

EF
exp�−

E� − EF

kBT
� ��

4

F�

	2

e2Lz
2 + �F��2

, �5�

where a thermal activation mechanism has been included
which accounts for the increase in the �th miniband by the
effect of temperature.

The field-assisted tunneling currents j�→c are computed
within the same transmission coefficient approximation as
for the low-temperature high-field currents with thermal ac-
tivation added,

j�→c = eN2D
kBT

EF
exp�−

E� − EF − �eFLw

kBT
�E

h
T��F� . �6�

where T� is the transmission coefficient of the barrier seen by
electrons in state �. The coefficient � is a geometrical pa-

rameter used to obtain the exponential asymptote observed in
the high-temperature IV curves at high electric fields. Its
physical interpretation is related to the fact that the interlevel
spacing and effective barrier lowering effects depend on the
applied electric field in a way that is related on the actual
shape of the QW, and thus is not easily analytically quanti-
fiable. A precise evaluation of � would in principle be pos-
sible by careful computation of the realistic conduction-band
profile at different electric fields, employing a self-consistent
Schrödinger-Poisson solution and including the effect of Al
diffusion into the wells, which is beyond the scope of the
current paper.

In addition, setting �=0 would just change the high-
temperature and high-bias region of the IV curves, replacing
the exponential asymptote with an horizontal one due to the
saturation of the transmission coefficient toward the value
T=1. For the device under study it is found that for �=1 the
high-temperature high-field behavior is well reproduced.

IV. RESULTS AND DISCUSSION

The model presented so far has been applied to compute
the IV curve of the device described in Sec. II. Figure 5
shows a comparison between the experimental data �dots�
and the computed IV curve �lines� at temperatures of 10 �bot-
tom curve�, 40, 50 and 60 K �top curve� where the theoretical
curves are computed by setting �=20 fs. The model can be
considered to agree quantitatively with the experiment on the
whole electric field and temperature range, keeping into ac-
count that the discrepancies in the high-temperature currents
correspond to a temperature shift of about 5 K.

The low-temperature high-field current resonances in the
theoretical curve are an artifact of the fully wavelike nature
of the model involved, where the current is proportional to
the transmission coefficient of a barrier. A more refined
model should also take into account in-plane scattering/
dephasing processes that would broaden the peaks and lead
to a smoother curve.

Despite the lack of doping dependence the low-field cur-
rent is well reproduced, and as a further check we have mea-
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sured the low-temperature saturation current of three addi-
tional devices with varying barrier width. These devices have
an Al concentration of 26%, well width of 5 nm and barrier
width of 15, 20, and 25 nm, respectively. As can be seen in
Fig. 6 the computed saturation current agrees quantitatively
with the measured one without the use of free parameters,
since the plateau current does not depend on �.

Anyway it must be noted that the plateau current in Eq.
�3� has a quadratic dependence on the miniband width,
which in turn has an exponential dependence on barrier
width and height and thus it is very sensitive to errors in the
evaluation of such quantities. In particular, for the device
described in Sec. II, which has a nominal miniband width of
30 neV, the combined effect of a 3–6 Å error in barrier
width �one to two monolayers� and a �5 meV error in the
barrier height ��0.5% Al concentration error� would lead to
miniband widths comprised between 56 and 15 neV, leading
to a variation in the low-field current of more than 1 order of
magnitude.

This barrier height uncertainty effect is also visible in Fig.
6. It can be seen that although the agreement is good, there is
a slight slope difference between the experimental data and
the computed currents: this could well be due to an error in
the evaluation of the miniband height.

Figures 7 and 8 show the relative values of the current
contributions that have been considered for the calculation,
at 20 and 50 K, respectively. It can be seen that each tem-
perature and electric field regime is dominated by one spe-
cific contribution. At 20 K the low-bias current is due to the
ground miniband current, j0 while at high fields is the
ground-to-continuum tunneling current j0→c which domi-
nates. At 50 K both these contributions are negligible when
confronted with the excited-state-to-continuum tunneling
current j1→c over the whole bias range. Upper miniband cur-
rents j1 and j2 never play a significant role in the total current
and could thus be neglected.

It is also useful to compare the low-field predictions of the
miniband model proposed here with other models based on

localized states. In particular we compare our results with the
density-matrix based second-order resonant tunneling theory
from Willemberg et al.13 which has been recently applied to
the description of tunneling in quantum cascade lasers.14 In
Ref. 13 the Kazarinov-Suris resonant tunneling theory is ex-
tended to include second-order terms coming from intrasub-
band elastic scattering; this leads to the following expression
for the current density between two quantum wells:

j =
e

	
�	��2�

k

�k
1�fk

2 − fq+

1 � + �k
2�fq−

2 − fk
1�

�2 + ��k
1 + �k

2�2 , �7�

where 	� is the coupling energy between wells, fk
i is the

number of electrons in the ith quantum well with planar
wave vector k, �k

i is the broadening of the same state due to
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FIG. 6. Computed �squares� and measured �circles� saturation
current for three additional devices with 26% Al concentration, 5
nm well and varying barrier width of 15, 20, and 25 nm.
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continuum is clearly dominant over the whole bias range.
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elastic scattering, �=eFLz is the detuning from resonance
and q�=�k2�

2m
	 �.

Considering a constant broadening � and assuming a
zero-temperature Fermi distribution of electrons in each well
it is possible to rewrite the current as

j =
e

	
�	��2 
��

�2 + �2��2 . �8�

Such result can be easily interpreted as being the tunneling
current due to electrons in the initial subband which are able
to find free states in the final subband: their number is 
�
and the current is weighted by a Lorentzian whose width is
given by �. Such current has a maximum for �=2� where it
reaches the value jsat=

1
4

e
	
�	��2, which is exactly what is

given in Eq. �3� considering that 	�=� /2.
Anyway as soon as 
� becomes equal to the Fermi en-

ergy Eq. �8� is no more valid because it would imply that the
number of electrons tunneling between wells is greater than
electron sheet density N2D=
EF. Thus for ��EF we have to
clamp � at EF and rewrite Eq. �8� as

� j =
e

	
�	��2 
��

�2 + �2��2 for � � EF

j =
e

	
�	��2N2D

�

�2 + �2��2 for � � EF.	 �9�

This way after an initial linear current increase, a saturation
regime is predicted where the number of tunneling electrons
is no more increased by the electric field because the initial
subband bottom is above the maximum energy of electrons
in the final one, giving the maximum possible tunneling rate.
On the other hand, as the field increases the system is more
off-resonant and thus the current decreases as a �-broadened
Lorentzian, in qualitative disagreement with observations.
However, a constant field drop across the superlattice has
been assumed in the negative differential conductance re-
gion; whereas experiments have shown that this is not the
case and electric field domain formation has to be expected15

and this would lower the actual detuning between subbands.
Eventually, this effect could lead to the clamping of the cur-
rent to its �=EF value, giving rise to the plateau behavior
with a saturation current given by

jsat =
e

	
�	��2N2D

�

EF
2 + �2��2 , �10�

which, in the case 2��EF reduces to

jsat =
1

4

e

	
N2D

�	��2

�
. �11�

The latter equation is again very similar to Eq. �3� the only
difference being that the Fermi energy at the denominator
has been replaced here by the in-plane broadening energy.
This gives the saturation current a linear dependence on dop-
ing, a feature which is missing in the miniband model and
that is to be expected in a real system, and at the same time
justifies why the miniband model is found to work in a con-
dition where the miniband width is much lower than the
Stark shift. The reason is that typical values of the in-plane

broadening energy are of the same order than the Fermi en-
ergy of electrons in QWIP systems, thus making Eqs. �3� and
�11� numerically equivalent. Anyway it must be noted that
Eq. �11� has been obtained by dropping the homogeneous
field approximation and speculating that the value of the
saturation current is clamped at the value it reaches for �
=EF. Thus a quantitative evaluation of the actual field distri-
bution should be performed before using Eq. �11� to evaluate
the plateau current, which is beyond the scope of the present
paper. Nevertheless from the above reasoning we can get
further insight into the physical interpretation of the mini-
band model and say it can be thought as a low-order approxi-
mation of a more general theory which should include
second-order tunneling as well as field inhomogeneity effects
which is working when the Fermi and in-plane broadening
energies are comparable.

V. SUMMARY AND CONCLUSIONS

We developed a model for the evaluation of dark current
in mid-IR QWIPs over a wide electric field and temperature
range. We have addressed the low-field and the high-field
regions of the dark IV curve using two different approaches:
the miniband and Wannier-Stark pictures, respectively. The
low-field miniband model is based on the high-density cor-
rection of the Esaki-Tsu model, in order to correctly handle
the case where the Fermi energy lies above the upper edge of
the ground miniband. Due the extremely low coupling be-
tween wells the miniband widths are of the order of tens of
neV due to the exponential dependence on the barrier width
and height. Even though with this extremely narrow mini-
bands one is usually led to drop the miniband picture in favor
of the localized Wannier-Stark basis, by using this model we
are able to derive an analytical expression for the low-field
dark current at low temperatures which quantitavely agrees
with the measured data from four different devices without
using any fitting parameter.

Up to 30 K the miniband based model is found to repro-
duce the experimental data up to 10 kV/cm; after this thresh-
old the high-field region begins and the experiment shows a
consistent deviation from the theoretical curve. We then
switch to a Wannier-Stark picture in which the current is
dominated by field-assisted tunneling from the ground state
of the QWs directly into the continuum. By using a modified
transfer-matrix formalism we derived an analytical expres-
sion for the transmission coefficient of trapezoidal barriers,
which allowed us to compute the tunneling rates. Again we
find quantitative agreement with experimental data with no
fitting parameters.

One fundamental limitation of the proposed model is that
the computed low-field current density lacks dependence on
the doping density, a feature which is intrinsic in the mini-
band description. Anyway since the doping levels in QWIPs
are such that the distance between the Fermi level and the
ground state is always approximately the same, this is not a
major issue as also confirmed by the fact that the low-field
current is correctly reproduced for four different devices. We
justify the lack of doping dependence in the model by com-
paring it to a higher order model and introducing electric
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field inhomogeneities. This comparison suggests that the lack
of doping dependence is due to the fact that the miniband
model is a low-order approximation of a more general
theory. In addition, any quantitative agreement must be in-
terpreted in view of the fact that in these structures the tun-
neling current are very sensitive to the barrier height and
width. We show that within the proposed model a small error
of �5 meV in the barrier height and �0.5 nm in barrier
width can determine current fluctuations of more than 1 or-
der of magnitude.

In the high-temperature region field-assisted thermionic
emission is found to dominate regardless of the applied elec-
tric field, as already pointed out by previous models.

APPENDIX A: LOW-FIELD CURRENT DENSITY

We shall start considering the three-dimensional miniband
structure of the device. Due to the extremely strong confine-
ment of electrons in the quantum wells the miniband disper-
sion is sinusoidal with very good approximation, while we
shall consider parabolic bands in the continuum. Thus we
can write the complete band structure as

E��k� = E� +
��

2
�1 − �− 1��cos�kzL�� +

	2k

2

2m
�A1�

where E� is the lowest energy of �th miniband, �� is the
miniband width, kz and k
 are the growth-direction and in-
plane parts of the electron wave vector and Lz is the super-
lattice periodicity.

From now on we shall drop the index � and refer to the
ground miniband only ��=0� since it is the only populated
one at low temperature. From the analytic expression of the
band structure we can write the group velocity v=�E /	 as

v��k� =
�L

2	
sin�kzL�ûz +

	k


m
û
 . �A2�

At thermal equilibrium the distribution function is given by

f�k� = f�kz,k
� =
1

1 + eE�kz,k
�−�/kBT , �A3�

where � is the electron chemical potential. Once f is known
we can use it to compute the average current density j as

j = eN3D

� v��k�f�k�dk

� f�k�dk

. �A4�

It is easy to see that at thermal the integral evaluates to 0
since f is symmetric in k space.

In the miniband picture the effect of bias is to translate the
distribution function in the direction of the applied field. In
absence of scattering this gives rise to the well-known Bloch
oscillations, but if we assume a certain momentum relaxation
time � then we can compute the average speed reached by an
electron initially at kz=0 by means of the Esaki-Tsu model as

vET =
�L

2	

�

1 + �2 , �A5�

where �=eF�L /	. Within the sinusoidal miniband approxi-
mation the corresponding drift in k space can be computed as

�kz�F� =
1

L
arcsin�2	

�L
vET� . �A6�

where the dependence on the electric field is hidden in vET.
In the case of high electron density we shall assume that

the whole distribution function is drifted by this amount,
breaking its symmetry and giving rise to a current. The IV
curve can then be obtained as

j�F� = eN3D

� v�k�f�k + �kz�F�ûz�dk

� f�k�dk

. �A7�

In order to find an analytical solution we can perform
some approximations exploiting the fact that the minibands
are extremely narrow and the temperature is low. As long as
kBT�� we can compute the integral at the denominator in
Eq. �A7� as the volume Vk of a cylinder in k space, whose
radius corresponds the Fermi in-plane wave vector k


F

=�2m� /	2 and whose height is 2� /L obtaining

Vk =
4�2m�

	2L
. �A8�

In the limit ��kBT the Fermi-Dirac distribution is a
slowly varying function over the miniband and thus we can
linearize it as

f�kz,k
� = f�0,k
� + � df

dE
�

kz=0
E�kz,k
� − E�0,k
�� , �A9�

which results in

f�kz,k
� = f�0,k
� +
�

2

� f

�k


� �k


�E
�

kz=0
1 − cos�kzL�� .

�A10�

Combining this latter equation with the immediately verifi-
able relation,

� �k


�E
�

kz=0
=

m

	2k


, �A11�

we get

f�kz,k
� = f�0,k
� +
�m

2	2k


1 − cos�kzL��� � f

�k


�
kz=0

.

�A12�

Within this approximation we can now explicitly compute
the integral in Eq. �A7� in cylindrical coordinates as
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j�F� =
eN3D

Vk
�

0

2� �
0

� �
−�/L

�/L � �L

2	
sin�kzL�ûz +

	k


m
û
�� f�0,k
�

+
�m

2	2k


1 − cos�kzL + �kz��� � f

�k

�

kz=0
�k
dkzdk
d� .

�A13�

From symmetry considerations it can be deduced that the
only nonzero term in the integral is the z component of the
current given by

jz�F� = −
eN3D�2Lm

4	3Vk
�

0

2� �
0

� �
−�/L

�/L

sin�kzL�cos�kzL + �kz�

�� � f

�k


�
kz=0

dkzdk
d� . �A14�

Performing the integrations along � and k
 and using the
sum rule for the cosine function we get

jz�F� = sin��kzL�
�2eN3D�2m

2	3Vk
f�E0� , �A15�

where f�E0� denotes the value of the Fermi-Dirac distribu-
tion function at the lowest edge of the miniband. Substituting
in the last equation the expressions of Vk and �kz from Eqs.
�A8� and �A6� we get

jz�F� = eN3DvET
�

4�
f�E0� . �A16�

From this we see that the current obtained by the Esaki-Tsu
model has to be corrected by the ratio between the miniband
width and the chemical potential. This is exactly the result
obtained by Lebwohl and Tsu in Ref. 11 for the case in
which the Fermi energy is above the upper miniband edge at
T=0. Finally, considering Eq. �A5� we can write the final
form of the IV curve as

jz�F� = N3D
F�

	2

e2L2 + �F��2

�2

8�
f�E0� . �A17�

APPENDIX B: TRANSMISSION COEFFICIENTS FROM
MODIFIED TRANSFER MATRIX METHOD

The method introduced by Rakityansky12 allows to devise
an approximation less closed-form expression for the transfer
matrix of any quantum device which can be separated into
sections for which a closed solution of the Schrödinger equa-
tion exists. Here we will apply the concept to piecewise lin-
ear potential profiles.

A modified transfer matrix has the form,

M�x� = � ��x� ��x�
���x� ���x�

� , �B1�

where ��x� and ��x� are two linearly independent solutions
of the one-dimensional �1D� stationary Schrödinger equation

for a potential profile V�x� which satisfy the conditions,

��0� = 1 ��0� = 0, �B2�

���0� = 0 ���0� = 1, �B3�

so that one can express the wave function ��x� and its de-
rivative ���x� as a function of ��0� and ���0� as

� ��x�
���x�

� = M�x�� ��0�
���0�

� . �B4�

With this definition of the transfer matrix one can com-
pute the transmission coefficient of a device enclosed be-
tween two constant potentials in the form,

T = � 2�k1k2

k1M22 + k2M11 − ik1k2M12 + iM21
�2

�B5�

where k1 and k2 are the electron wave vectors on the left and
right side of the device.

The transfer-matrix elements of for a trapezoidal barrier
of width L, height E0 with equivalent electric field F are

M11 = �Bi���0�Ai��� − Ai���0�Bi���� , �B6�

M12 =
�

�
− Bi��0�Ai��� + Ai��0�Bi���� , �B7�

M21 = ��Bi���0�Ai���� − Ai���0�Bi����� , �B8�

M22 = �− Bi��0�Ai���� + Ai��0�Bi����� , �B9�

with

� = F1/3, �B10�

�0 = −
E − E0

�2 , �B11�

� = �L + �0, �B12�

where

F = e
2m

	2 F , �B13�

E =
2m

	2 E , �B14�

E0 =
2m

	2 E0, �B15�

where E is the electron energy.
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